Precision Cosmology with Large-Scale Structure Surveys

The Effective Field Theory of Large-Scale Structure applied to SDSS-BOSS data

> April, 26th, 2019 @2019 CCNU - cfa @USTC Junior Cosmology Symposium

Pierre Zhang

@Particle Cosmology Group @Department of Astronomy @USTC

Euclid, ...

I. EFTofLSS " Effective Field Theory of Large-Scale Structure " Building LSS observables from first principles

II. Redshift Surveys Data Analysis Extracting cosmological information from LSS

III. Results

SDSS-BOSS data analysis results

with G. d'Amico, J. Gleyzes, N. Kokron, D. Markovic, L. Senatore, F. Beutler, H. Gil Marin

I. EFTofLSS Building LSS observables from first principles

EFTofLSS and Dieletric Materials

slide inspired from a talk of L. Senatore

- Dielectric Materials Theory:
- massless spin-1 object (light) interacting with composite objects (atoms)
- **EFTofLSS:**
- massless spin-2 object (gravity) interacting with composite objects (galaxies)

$$\begin{split} \dot{\delta}_{\ell} &+ \frac{1}{a} \partial_i ((1 + \delta_{\ell})) v_{\ell}^i) = 0 , \\ \dot{v}_{\ell}^i &+ H v_{\ell}^i + \frac{1}{a} v_{\ell}^j \partial_j v_{\ell}^i + \frac{1}{a} \partial_i \phi_{\ell} = \int^t dt' \; [c_{s,1}(t,t') \, \delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t') \\ &+ c_{s,2}(t,t') \, \delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t')^2 + \ldots] \\ \end{split}$$
Energy + momentum conservation equations in Newton gravity for the long-wavelength modes (most general parametric form)

$$\dot{\delta}_{\ell} + \frac{1}{a}\partial_i((1+\delta_{\ell}))v_{\ell}^i) = 0 ,$$

$$\dot{v}_{\ell}^i + Hv_{\ell}^i + \frac{1}{a}v_{\ell}^j\partial_j v_{\ell}^i + \frac{1}{a}\partial_i\phi_{\ell} = \int^t$$

Solved perturbatively with a *finite* number of *counterterms* at each perturbative order **Dark matter** $\delta_{\ell}(\vec{k},t) = \sum_{n} \delta_{\ell}^{(n)}(\vec{k},t)$ $dt' [c_{s,1}(t,t') \delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t') + c_{s,2}(t,t') \delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t')^2 + ...]$

$$\begin{split} \dot{\delta}_{\ell} &+ \frac{1}{a} \partial_i ((1+\delta_{\ell})) v_{\ell}^i) = 0 , \\ \dot{v}_{\ell}^i &+ H v_{\ell}^i + \frac{1}{a} v_{\ell}^j \partial_j v_{\ell}^i + \frac{1}{a} \partial_i \phi_{\ell} = \int^t dt' \; \left[c_{s,1}(t,t') \, \delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t') \right. \\ &+ c_{s,2}(t,t') \, \delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t')^2 + \ldots \right] \end{split}$$

$$\begin{split} \dot{\delta}_{\ell} &+ \frac{1}{a} \partial_{i} ((1 + \delta_{\ell})) v_{\ell}^{i}) = 0 , & \text{Dark matter} \qquad \delta_{\ell}(\vec{k}, t) = \sum_{n} \delta_{\ell}^{(n)}(\vec{k}, t) \\ \dot{v}_{\ell}^{i} &+ H v_{\ell}^{i} + \frac{1}{a} v_{\ell}^{j} \partial_{j} v_{\ell}^{i} + \frac{1}{a} \partial_{i} \phi_{\ell} = \int^{t} dt' \; [c_{s,1}(t, t') \, \delta_{\ell}(x_{\mathrm{fl}}(\vec{x}, t, t'), t') \\ &+ c_{s,2}(t, t') \, \delta_{\ell}(x_{\mathrm{fl}}(\vec{x}, t, t'), t')^{2} + \dots] \\ \delta_{\ell,g}(\vec{x}, t) &= \int^{t} dt' \; [\bar{c}_{1}(t, t') \, \delta_{\ell}(x_{\mathrm{fl}}(\vec{x}, t, t'), t') \\ &+ \bar{c}_{2}(t, t') \, \partial_{i} v_{\ell}^{i}(x_{\mathrm{fl}}(\vec{x}, t, t'), t') \\ &+ \bar{c}_{2}(t, t') \, \partial_{i} v_{\ell}^{i}(x_{\mathrm{fl}}(\vec{x}, t, t'), t')^{2} + \bar{c}_{3}(t, t') \, \delta_{\ell}(x_{\mathrm{fl}}(\vec{x}, t, t'), t')^{2} + \dots] \\ \\ \text{Expressed as coefficient-weighted combinations of the underlying } \\ \delta_{\ell,g,r}(\vec{k}, t) &= \delta_{\ell,g}(\vec{k}, t) - i \frac{k_{z}}{aH} v_{\ell,g}^{z}(\vec{k}, t) + \frac{i^{2}}{2} \left(\frac{k_{z}}{aH}\right)^{2} [v_{\ell,g}^{z}(\vec{x}, t)^{2}]_{\vec{k}} \\ &- \frac{i^{3}}{3!} \left(\frac{k_{z}}{aH}\right)^{3} [v_{\ell,g}^{z}(\vec{x}, t)^{3}]_{\vec{k}} - i \frac{k_{z}}{aH} [v_{\ell,g}^{z}(\vec{x}, t) \delta(\vec{x}, t)]_{\vec{k}} + \frac{i^{2}}{2} \left(\frac{k_{z}}{aH}\right)^{2} [v_{\ell,g}^{z}(\vec{x}, t)^{2} \delta_{\ell,g}(\vec{x}, t)]_{\vec{k}} + \\ &+ \int dt' \left(\frac{aH}{k_{\mathrm{NL}}}\right)^{2} \left[c_{r,1}(t, t') \delta_{D}^{(3)}(\vec{k}) + \left(c_{r,2}(t, t') + c_{r,3}(t, t') \frac{k_{z}^{2}}{k^{2}}\right) [\delta_{\ell}(x_{\mathrm{fl}}(\vec{x}, t, t'), t')]_{\vec{k}}\right] + \\ \text{Space} \end{split}$$

$$\begin{aligned} & \text{One slide of equations} \\ & \dot{\delta}_{\ell} + \frac{1}{a} \partial_{i} ((1 + \delta_{\ell})) v_{\ell}^{i}) = 0 , \\ & \text{Dark matter} \\ & \dot{v}_{\ell}^{i} + H v_{\ell}^{i} + \frac{1}{a} v_{\ell}^{j} \partial_{j} v_{\ell}^{i} + \frac{1}{a} \partial_{i} \phi_{\ell} = \int^{t} dt' \; [c_{s,1}(t,t') \, \delta_{\ell}(x_{fl}(\vec{x},t,t'),t') \\ & + c_{s,2}(t,t') \, \delta_{\ell}(x_{fl}(\vec{x},t,t'),t')^{2} + \dots] \end{aligned}$$

$$\delta_{\ell,g}(\vec{x},t) = \int^{t} dt' \; [\bar{c}_{1}(t,t') \, \delta_{\ell}(x_{fl}(\vec{x},t,t'),t') \\ & + \bar{c}_{2}(t,t') \, \partial_{i} v_{\ell}^{i}(x_{fl}(\vec{x},t,t'),t') \\ & + \bar{c}_{2}(t,t') \, \partial_{i} v_{\ell}^{i}(x_{fl}(\vec{x},t,t'),t')^{2} + \bar{c}_{3}(t,t') \, \delta_{\ell}(x_{fl}(\vec{x},t,t'),t')^{2} + \dots] \end{aligned}$$

$$\delta_{\ell,g,r}(\vec{k},t) = \delta_{\ell,g}(\vec{k},t) - i \frac{k_{z}}{aH} v_{\ell,g}^{z}(\vec{k},t) + \frac{i^{2}}{2} \left(\frac{k_{z}}{aH}\right)^{2} [v_{\ell,g}^{z}(\vec{x},t)^{2}]_{\vec{k}} \\ & - \frac{i^{3}}{3!} \left(\frac{k_{z}}{aH}\right)^{3} [v_{\ell,g}^{z}(\vec{x},t)^{3}]_{\vec{k}} - i \frac{k_{z}}{aH} [v_{\ell,g}^{z}(\vec{x},t) \delta(\vec{x},t)]_{\vec{k}} + \frac{i^{2}}{2} \left(\frac{k_{z}}{aH}\right)^{2} [v_{\ell,g}^{z}(\vec{x},t)^{2} \delta_{\ell,g}(\vec{x},t)]_{\vec{k}} + \int dt' \left(\frac{aH}{k_{NL}}\right)^{2} \left[c_{r,1}(t,t') \delta_{D}^{3}(\vec{k}) + \left(c_{r,2}(t,t') + c_{r,3}(t,t') \frac{k_{z}^{2}}{k^{2}}\right) [\delta_{\ell}(x_{fl}(\vec{x},t,t'),t')]_{\vec{k}}\right] + \text{Space} \end{aligned}$$

One slide of equations $\dot{\delta}_{\ell} + \frac{1}{a} \partial_i ((1+\delta_{\ell})) v_{\ell}^i) = 0 ,$ $\delta_{\ell}(\vec{k},t) = \sum \delta_{\ell}^{(n)}(\vec{k},t)$ $\dot{v}_{\ell}^{i} + Hv_{\ell}^{i} + \frac{1}{a} \underbrace{Bottom}_{v_{\ell}} \underbrace{line:}_{a} \int^{t} dt' \ [c_{s,1}(t,t') \,\delta_{\ell}(x_{\mathrm{fl}}(\vec{x},t,t'),t')]$ $+c_{s,2}(t,t') \,\delta_{\ell}(x_{\rm fl}(\vec{x},t,t'),t')^2 + \dots]$ $\delta_{\ell,g}(\vec{x},t) = \int \underset{dt'}{\text{Correlation functions of galaxies in redshift space}}$ $= \underset{i=1}{\overset{+\bar{c}_{2}(t,t') \partial_{i}v_{\ell}^{i}(x_{\mathrm{fl}}(\vec{x},t,t'),t')^{2} + \bar{c}_{3}(t,t') \delta_{\ell}(x_{\mathrm{fl}}(\vec{x},t,t'),t')^{2} + \dots]}_{2} \text{ bias-weighted) combination of}$ $\delta_{\ell,g,r}(\vec{k},t) = \delta_{\ell,g}(\vec{k},t) - \mathbf{DM}$ correlation functions $-\frac{i^{3}}{3!}\left(\frac{k_{z}}{aH}\right)^{3}[v_{\ell,g}^{z}(\vec{x},t)^{3}]_{\vec{k}} - i\frac{k_{z}}{aH}[v_{\ell,g}^{z}(\vec{x},t)\delta(\vec{x},t)]_{\vec{k}} + \frac{i^{2}}{2}\left(\frac{k_{z}}{aH}\right)^{2}[v_{\ell,g}^{z}(\vec{x},t)^{2}\delta_{\ell,g}(\vec{x},t)]_{\vec{k}} + \int dt'\left(\frac{aH}{k_{NL}}\right)^{2} \begin{bmatrix}Finite number of counterterms\\c_{r,1}(t,t')\delta_{D}^{(3)}(\vec{k}) + (c_{r,2}(t,t') + c_{r,3}(t,t')\frac{k_{z}}{k^{2}})[\delta_{\ell}(x_{ff}(\vec{x},t,t'),t')]_{\vec{k}}] + \dots$

Galaxies power spectrum in redshift space:

$$\begin{split} P_g(k,\mu) &= Z_1(\mu)^2 P_{11}(k) \\ &+ 2\int d^3q \; Z_2(q,\mathbf{k}-q,\mu)^2 P_{11}(|\mathbf{k}-q|) P_{11}(q) + 6Z_1(\mu) P_{11}(k) \int d^3q \; Z_3(q,-q,\mathbf{k},\mu) P_{11}(q) \\ &+ 2Z_1(\mu) P_{11}(k) \left(c_{\rm ct} \frac{k^2}{k_{\rm M}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\rm M}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\rm M}^2} \right) + \frac{1}{\bar{n}_g} \left(c_{\epsilon,1} + c_{\epsilon,2} \frac{k^2}{k_{\rm M}^2} + c_{\epsilon,3} f \mu^2 \frac{k^2}{k_{\rm M}^2} \right). \end{split}$$

Galaxies power spectrum in redshift space:

$$\begin{split} & \underset{P_g(k,\mu)}{\text{linear power spectrum}} \\ P_g(k,\mu) &= \frac{Z_1(\mu)^2 P_{11}(k)}{2\int d^3 q \ Z_2(q,k-q,\mu)^2 P_{11}(|k-q|) P_{11}(q) + 6Z_1(\mu) P_{11}(k) \int d^3 q \ Z_3(q,-q,k,\mu) P_{11}(q)} \\ &+ 2Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{k_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{M}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{M}}^2} \right) + \frac{1}{\bar{n}_g} \left(c_{\epsilon,1} + c_{\epsilon,2} \frac{k^2}{k_{\text{M}}^2} + c_{\epsilon,3} f \mu^2 \frac{k^2}{k_{\text{M}}^2} \right). \end{split}$$

 $\begin{array}{ll} \mbox{Galaxies kernels in redshift space:} & Z_1(q_1) = K_1(q_1) + f\mu_1^2 G_1(q_1) = b_1 + f\mu_1^2, & (6) \\ \mbox{composed of density and velocity kernels} & Z_2(q_1, q_2, \mu) = K_2(q_1, q_2) + f\mu_{12}^2 G_2(q_1, q_2) + \frac{1}{2} f\mu q \left(\frac{\mu_2}{q_2} G_1(q_2) Z_1(q_1) + \text{perm.}\right), & \\ \mbox{functions of 4 bias parameters at the} & & \\ 1-\text{loop} & & & \\ 1-\text{loop} & & & \\ \end{array}$

where here $\mu = \mathbf{q} \cdot \hat{\mathbf{z}}/q$, $\mathbf{q} = \mathbf{q}_1 + \dots + \mathbf{q}_n$, and $\mu_{i_1\dots i_n} = \mathbf{q}_{i_1\dots i_n} \cdot \hat{\mathbf{z}}/q_{i_1\dots i_n}$, $\mathbf{q}_{i_1\dots i_m} = \mathbf{q}_{i_1} + \dots + \mathbf{q}_{i_n}$

Galaxies power spectrum in redshift space:

$$\begin{split} & \underset{P_g(k,\mu)}{\text{linear power spectrum}} P_g(k,\mu) = \frac{Z_1(\mu)^2 P_{11}(k)}{2\int d^3 q \ Z_2(q,k-q,\mu)^2 P_{11}(|k-q|) P_{11}(q) + 6Z_1(\mu) P_{11}(k) \int d^3 q \ Z_3(q,-q,k,\mu) P_{11}(q)} \\ & + 2Z_1(\mu) P_{11}(k) \left(c_{\text{ct}} \frac{k^2}{k_{\text{M}}^2} + c_{r,1} \mu^2 \frac{k^2}{k_{\text{M}}^2} + c_{r,2} \mu^4 \frac{k^2}{k_{\text{M}}^2} \right) + \frac{1}{\bar{n}_g} \left(c_{\epsilon,1} + c_{\epsilon,2} \frac{k^2}{k_{\text{M}}^2} + c_{\epsilon,3} f \mu^2 \frac{k^2}{k_{\text{M}}^2} \right). \end{split}$$

counterterms

Galaxies power spectrum in redshift space:

1 dark matter counterterm: Renormalization the 1-loop

2 redshift-space counterterms: Renormalization of velocity operators

Higher derivative term: Encloses spatial extension of galaxies

Galaxies power spectrum in redshift space:

$$\begin{split} & \underset{P_{g}(k,\mu)}{\text{linear power spectrum}} P_{g}(k,\mu) = \frac{Z_{1}(\mu)^{2}P_{11}(k)}{2\int d^{3}q \ Z_{2}(q,k-q,\mu)^{2}P_{11}(|k-q|)P_{11}(q) + 6Z_{1}(\mu)P_{11}(k) \int d^{3}q \ Z_{3}(q,-q,k,\mu)P_{11}(q)} \\ & + 2\int d^{3}q \ Z_{2}(q,k-q,\mu)^{2}P_{11}(|k-q|)P_{11}(q) + 6Z_{1}(\mu)P_{11}(k) \int d^{3}q \ Z_{3}(q,-q,k,\mu)P_{11}(q) \\ & + 2Z_{1}(\mu)P_{11}(k) \left(c_{\text{ct}}\frac{k^{2}}{k_{\text{M}}^{2}} + c_{r,1}\mu^{2}\frac{k^{2}}{k_{\text{M}}^{2}} + c_{r,2}\mu^{4}\frac{k^{2}}{k_{\text{M}}^{2}}\right) + \frac{1}{\bar{n}_{g}}\left(c_{\epsilon,1} + c_{\epsilon,2}\frac{k^{2}}{k_{\text{M}}^{2}} + c_{\epsilon,3}f\mu^{2}\frac{k^{2}}{k_{\text{M}}^{2}}\right). \end{split}$$

counterterms

stochastic terms

Function of 10 free 'EFT' parameters:

- 4 galaxies biases
- 3 counterterms
- 3 stochastic terms

II. Redshift Surveys Data Analysis Extracting cosmological information from LSS

Analysis pipeline

$\{A_s,\Omega_m,h\}$

Decomposition in bias-independent parts:

$$P_g(k,z) = \sum_n \mu^{2\alpha_n} f(z)^{\beta_n} b_{i_n}(z)^{\gamma_n} b_{j_n}(z)^{\delta_n} D(z)^{2\rho_n} P_n(k) ,$$

Analysis pipeline

Decomposition in bias-independent parts: $P_g(k,z) = \sum_n \mu^{2\alpha_n} f(z)^{\beta_n} b_{i_n}(z)^{\gamma_n} b_{j_n}(z)^{\delta_n} D(z)^{2\rho_n} P_n(k) ,$ Decomposition in multipoles with Alock-Paszynski effect: $P_n^{\ell}(k^{\text{ref}}) = \frac{2\ell + 1}{2q_{\parallel}q_{\perp}^2} \int_{-1}^{1} d\mu^{\text{ref}} \,\mu(\mu^{\text{ref}})^{2\alpha_n} P_n\left(k(k^{\text{ref}},\mu^{\text{ref}})\right) \mathcal{P}_{\ell}(\mu^{\text{ref}}) ,$

$$\begin{split} k &= \frac{k^{\text{ref}}}{q_{\perp}} \left[1 + (\mu^{\text{ref}})^2 \left(\frac{1}{F^2} - 1 \right) \right]^{1/2}, \\ \mu &= \frac{\mu^{\text{ref}}}{F} \left[1 + (\mu^{\text{ref}})^2 \left(\frac{1}{F^2} - 1 \right) \right]^{-1/2}, \quad q_{\perp} = \frac{D_A(z_{\text{eff}}) H(z=0)}{D_A^{\text{ref.}}(z_{\text{eff}}) H^{\text{ref}}(z=0)}, \qquad q_{\parallel} = \frac{H^{\text{ref}}(z_{\text{eff}}) / H^{\text{ref}}(z=0)}{H(z_{\text{eff}}) / H(z=0)}. \end{split}$$

where $F = q_{\parallel}/q_{\perp}$. AP parameters are not free in our analysis

Analysis pipeline

Decomposition in bias-independent parts:

$$P_g(k,z) = \sum \mu^{2\alpha_n} f(z)^{\beta_n} b_{i_n}(z)^{\gamma_n} b_{j_n}(z)^{\delta_n} D(z)^{2\rho_n} P_n(k) ,$$

Decomposition in multipoles with Alock-Paszynski effect: $P_n^{\ell}(k^{\text{ref}}) = \frac{2\ell + 1}{2q_{\parallel}q_{\perp}^2} \int_{-1}^{1} d\mu^{\text{ref}} \,\mu(\mu^{\text{ref}})^{2\alpha_n} P_n\left(k(k^{\text{ref}}, \mu^{\text{ref}})\right) \mathcal{P}_{\ell}(\mu^{\text{ref}}) \,,$

Application of the window functions (in Fourier space): $P_{\ell}^{(\text{EFT})(W)}(k) = W_{\ell,\ell'}(k,k') \cdot P_{\ell'}^{(\text{EFT})}(k)$,

$$W(k,k')_{\ell,\ell'} = \frac{2}{\pi} (-i)^{\ell} i^{\ell'} k'^2 \int ds \, s^2 \, j_{\ell}(ks) \, Q_{\ell,\ell'}(s) \cdot j_{\ell'}(k's) \, .$$

III. Results SDSS-BOSS data analysis results

Tests against simulations

SDSS 'challenge' boxes ~ 4 times the effective volume of SDSS-BOSS CMASS sample

No theory-systematics detected within 1-sigma statistical fluctuations of the simulation

Error bars shrinking with kmax

Application of CMB sound horizon prior $r_{d} = \int_{-\infty}^{\infty} \frac{c_{s}(z)}{H(z)} dz, \quad |_{\overline{\mathbf{07}}} c_{s}^{2}(z) = \frac{c^{2}}{3} \left[1 + \frac{3}{4} \frac{\rho_{b}(z)}{\rho_{\gamma}(z)} \right]_{-\infty}^{-1}$ $\langle h \rangle = 0.666$ ± 0.010 (10001 ± 0.002 = 1 = 3.11±0.010 (*8.66 ±0.001 $k_{max} = 0.3$ Reduction of statistical errors ~ {35, 20, 62} % $\left< \begin{array}{c} \left(\Omega_{--} \right) = 0.304 \\ \pm 0.008 \\ \pm 0.000 \end{array} \right|_{= 0.002}$ = 3.14 $\langle h \rangle = 0.681$ $\pm 0.008 \begin{pmatrix} ration \\ ratio \\ -0.014 \end{pmatrix}$ $\pm 0.000 \begin{pmatrix} ratio \\ ratio \\ -0.014 \end{pmatrix}$ $k_{max} = 0.25$ Theory-systematic errors decreased Charlenner. $\left< \begin{array}{c} (\Omega_{--}) = 0.309 \\ \pm 0.009 \\ \pm 0.000 \\ \pm 0.000 \end{array} \right|_{-0.050}$ $\langle h \rangle = 0.676$ ± 0.010 (± 0.000 ± 0.000 (-0.009) = 3.19 $k_{max} = 0.2$ -148 $(\ln(10^{10}A_{-}))$ =0.15 (-=11) =0.00 $\begin{array}{c} (\Omega_{m}) = 0.320 \\ \pm 0.012 \\ \pm 0.001 \end{array} = 0.001 \end{array}$ = 3.12 $\langle h \rangle = 0.663$ $\pm 0.012 \begin{pmatrix} \pm 0.013 \\ \pm 0.002 \end{pmatrix}$ $\pm 0.002 \quad 1$ k_max = 0.15 0.8 3.5 3.0 2.5 3.0 3.5 0.25 0.30 0.35 0.6 0.7 0.8 $\ln(10^{10}A_{*})$ In(1010 A.) Ω_{-}

Tests against simulations

Contour plot

Different HOD models differ on linear bias b1

SDSS-BOSS NGC CMASS

min
$$\chi^2$$
/d.o.f. ~ 106/ 100

p-value: 0.32

SDSS-BOSS NGC CMASS

 $\{A_s, \Omega_m, h\}$ measured ~ 15%, 5%, 5%

with CMB sound horizon prior: 14%, 3.8% and 1.9%

Euclid, ...

Thanks for your attention !

Inclusion of the bispectrum Data Data with Bisp. Data rd Data rd with Bisp. 3 ď ø 29 097 3 -2 2 2.60 50 2 -12 3 2 10% increase in constraints 4 23 23333 $\ln(10^{10})$

Last two-decades approach: BAO extraction and RSD Baryon Acoustic Oscillations Redshift-Space Distortions

- BAO extraction: 'wiggle' 'non-wiggle' separation > broad-band signal not analyzed > non-smooth features in the primordial spectrum missed > degeneracy $H_0 - \Omega_m$
- RSD > degeneracy $f\sigma_8$
- > Input from either CMB ('inverse-cosmic ladder') or SNe ('cosmic ladder') necessary to break degeneracies

Last two-decades approach: BAO extraction and RSD

Information loss BAO extraction: 'wiggle' - 'non-wiggle' separation > broad-band signal not analyzed Introduction > non-smooth features in the primordial spectrum missed of systematics > degeneracy $H_0 - \Omega_m$ Non-independent No probe of RSD > degeneracy $f\sigma_8$ measurements baryons-to-matter fraction, etc. > Input from either CMB ('inverse-cosmic ladder') or SNe ('cosmic ladder') necessary to break degeneracies

Can we do better with the EFTofLSS?